Add like
Add dislike
Add to saved papers

Non-adiabatic molecular dynamics with ΔSCF excited states.

Accurate modelling of nonadiabatic transitions and electron-phonon interactions in extended systems is essential for understanding the charge and energy transfer in photovoltaic and photocatalytic materials. The extensive computational costs of the advanced excited state methods have stimulated the development of many approximations to study the nonadiabatic molecular dynamics (NA-MD) in solid-state and molecular materials. In this work, we present a novel ▵SCF-NA-MD methodology that aims to account for electron-hole interactions and electron-phonon back-reaction critical in modelling photoinduced nuclear dynamics. The excited states dynamics is described using the delta self-consistent field (▵SCF) technique within the density functional formalism and the trajectory surface hopping. The technique is implemented in the open-source Libra-X package freely available on the Internet (https://github.com/Quantum-Dynamics-Hub/Libra-X). This work illustrates the general utility of the developed ▵SCF-NA-MD methodology by characterizing the excited state energies and lifetimes, reorganization energies, photoisomerization quantum yields, and by providing the mechanistic details of reactive processes in a number of organic molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app