Add like
Add dislike
Add to saved papers

Single-Sided Competitive Axial Coordination of G-Quadruplex/Hemin as Molecular Switch for Imaging Intracellular Nitric Oxide.

Axial coordination is a crucial biological process to regulate biomolecules' functions in natural enzymes. However, it is a great challenge to determine the single or dual axial interaction between the metal center of enzymes and the ligand. In this work, a controllable axial coordination system was developed based on G-quadruplex/hemin complex by designing a series of fluorescent derivatives. The mechanism on axial coordination of G-quadruplex/hemin with coumarin-imidazole ligands was proposed to be single-sided, and led to fluorescence quenching of ligands. Upon addition of nitric oxide, the fluorescence of ligands was recovered through competitive axial coordination, providing a "signal on" strategy for signal transduction. More significantly, the fluorescent imaging of intracellular nitric oxide was achieved after conjugating with gold nanoparticles. Also, the proposed protocol provided a smart strategy to monitor the relationship between nitric oxide and p53 protein activity in living cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app