Add like
Add dislike
Add to saved papers

Triacylglycerol-Lowering Effect of Docosahexaenoic Acid Is Not Influenced by Single-Nucleotide Polymorphisms Involved in Lipid Metabolism in Humans.

Lipids 2018 November 9
The triacylglycerol (TAG)-lowering effects of long-chain n-3 fatty acids, and in particular docosahexaenoic acid (DHA), are well documented, although these effects manifest large interindividual variability. The objective of this secondary analysis is to investigate whether common single-nucleotide polymorphisms (SNP) in genes involved in DHA synthesis and TAG metabolism are associated with the responsiveness of blood lipids, lipoprotein, and apolipoprotein concentration to dietary treatment by DHA supplied in high-oleic canola oil (HOCO). In a randomized, crossover-controlled feeding trial, 129 subjects with metabolic syndrome received high-oleic canola oil (HOCO) and high-oleic canola oil supplemented with DHA (HOCO-DHA), each for 4 weeks. During the HOCO-DHA phase, the intake of DHA ranged from 1 to 2.5 g/day. The subjects were genotyped for apolipoprotein E (APOE) isoforms, and SNP including FADS1-rs174561, FADS2-rs174583, ELOVL2-rs953413, ELOVL5-rs2397142, CETP-rs5882, SCD1-rs2234970, PPARA-rs6008259, and LIPF-rs814628 were selected as important genes controlling fatty acid metabolism. Overall, consumption of HOCO-DHA oil reduced blood concentrations of TAG by 24% compared to HOCO oil. The reduction in TAG was independent of genetic variations in the studied genes. Similarly, no treatment-by-gene interactions were evident in the response to other lipids, lipoproteins, or apolipoproteins to DHA supplementation. Nevertheless, a lower interindividual variation in the TAG response to DHA supplementation compared to other studies was observed in this analysis. The TAG-lowering effect of a supplemental body-weight-based dose of DHA was not influenced by genetic variations in APOE, FADS1, FADS2, ELOVL2, ELOVL5, CETP, SCD1, PPARA, and LIPF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app