Add like
Add dislike
Add to saved papers

Substrate Determinants for Unwinding Activity of the DExH/D-Box Protein RNA Helicase A.

Biochemistry 2018 November 16
RNA helicase A (RHA) as a member of the DExH/D-box subgroup of helicase superfamily II is involved in virtually all aspects of RNA metabolism. It exhibits robust RNA helicase activity in vitro. However, little is known about the molecular and physical determinants for RHA substrate recognition and RHA translocation along the nucleic acids. Here, our nondenaturing polyacrylamide gel electrophoresis (PAGE)-based unwinding assays of chemical and structural modified substrates indicate that RHA translocates efficiently along the 3' overhang of RNA, but not DNA, with a requirement of covalent continuity. Ribose-phosphate backbone lesions on both strands of the nucleic acids, especially on the 3' overhang of the loading strand, affect RHA unwinding significantly. Furthermore, RHA requires RNA on the 3' overhang which directly or indirectly connects with the duplex region to mediate productive unwinding. Collectively, these findings propose a basic mechanism of the substrate determinants for RHA backbone tracking during duplex unwinding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app