Add like
Add dislike
Add to saved papers

Metallothionein Induced Time Dependent Histomorphometric Analysis of Clarias gariepinus Exposed to Cadmium.

Cadmium (Cd), an extremely toxic heavy metal is extensively used in modern era because of its constructive chemical and physical properties. Recently Cd contamination was estimated in India's major cities fresh water ecosystem, which may have firm impact on human health. Hence, this study was aimed to detect the time dependent effect of cadmium in fresh water fish C. gariepinus, a bioindicator species of water pollution. In a controlled environment, fishes were exposed to cadmium for different duration and analyzed for Cd accumulation. Cd induced toxicity was assessed by estimating metallothionein biomarker protein of heavy metal toxicity and histomorphometric changes in liver and kidney. Our results revealed that fish exposed to Cd induced apoptosis in fish tissues via induction of caspases and in contrast the metallothionein was also increased consistently with different doses of Cd exposure. Hence we conclude Cd induced structural damages to fishes are attributed to induction of caspases and estimating MT level in tissues can be effective biomarker to analyze the effect of acute environmental exposure to Cd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app