Add like
Add dislike
Add to saved papers

Naringenin prevents doxorubicin-induced toxicity in kidney tissues by regulating the oxidative and inflammatory insult in Wistar rats.

This study is undertaken to investigate the effects of naringenin on doxorubicin- (Dox) induced nephrotoxicity in Wistar rats. Dox 10 mg/kg body weight was administered intraperitoneally once and naringenin 50 and 100 mg/kg body weight was administered orally daily for 21 d. Dox-induced oxidative stress lead to steep elevation in blood urea nitrogen (BUN), creatinine, lactate dehydrogenase (LDH), and kidney injury molecule-1 (KIM-1), compared to control, treatment with naringenin preserved kidney functions. With Dox treatment significant decrease in antioxidant enzymes with increase in malondialdehyde (MDA) compared to control was observed. Naringenin treatment reversed these values compared to Dox in kidney tissue. Dox treatment showed increased tissue nitric oxide levels naringenin treatment decreased nitric oxide (NO) in kidney tissue. Furthermore, Dox-induced inflammatory burst as indicated by up-regulation of nuclear factor-κB (NF-κB), tumour necrosis factor-α (TNF-α) tissue levels and prostaglandin-E2 (PGE-2). All such events were normalised back to normal by naringenin treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app