Add like
Add dislike
Add to saved papers

The carbamate aldicarb altered the gut microbiome, metabolome and lipidome of C57BL/6J mice.

The gut microbiome is highly involved in numerous aspects of host physiology, from energy harvest to stress response, and can confer many benefits to the host. The gut microbiome development could be affected by genetic and environmental factors, including the pesticides. The carbamate insecticide aldicarb has been extensively used in agriculture, which raises serious public health concern. However, the impact of aldicarb on the gut microbiome, host metabolome and lipidome has not been well studied yet. Herein, we use multi-omics approaches, including16S rRNA sequencing, shotgun metagenomics sequencing, metabolomics and lipidomics, to elucidate aldicarb-induced toxicity in the gut microbiome and the host metabolic homeostasis. We demonstrated that aldicarb perturbed the gut microbiome development trajectory, enhanced gut bacterial pathogenicity, altered complex lipid profile, induced oxidative stress, protein degradation and DNA damage. The brain metabolism was also disturbed by the aldicarb exposure. These findings may provide a novel understanding of the toxicity of carbamate insecticides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app