JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Design of smart targeted and responsive drug delivery systems with enhanced antibacterial properties.

Nanoscale 2018 November 9
The use of antibiotics has been an epoch-making invention in the past few decades for the treatment of infectious diseases. However, the intravenous injection of antibiotics lacking responsiveness and targeting properties has led to low drug utilization and high cytotoxicity. More importantly, it has also caused the development and spread of drug-resistant bacteria due to repeated medication and increased dosage. The differences in the microenvironments of the bacterial infection sites and normal tissues, such as lower pH, high expression of some special enzymes, hydrogen peroxide and released toxins, etc., are usually used for targeted and controlled drug delivery. In addition, bacterial surface charges, antigens and the surface structures of bacterial cell walls are all different from normal tissue cells. Based on the special bacterial infection microenvironments and bacteria surface properties, a series of drug delivery systems has been constructed for highly efficient drug release. This review summarizes the recent progress in targeted and responsive drug delivery systems for enhanced antibacterial properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app