Add like
Add dislike
Add to saved papers

A Method to Improve the Imaging Quality in Dual-Wavelength Digital Holographic Microscopy.

A digital hologram-optimizing method was proposed to improve the imaging quality of dual-wavelength digital holographic microscopy (DDHM) by reducing the phase noise level. In our previous work, phase noise reduction was achieved by dual-wavelength digital image-plane holographic microscopy (DDIPHM). In the optimization method in this paper, the phase noise was further reduced by enhancing the real-image term and suppressing effects of the zero-order term in the frequency spectrum of a digital hologram. Practically, the carrier frequency of the real-image term has the correspondence with interference fringes in the hologram. Mathematically, the first order intrinsic mode function (IMF1) in bidimensional empirical mode decomposition (BEMD) has similar characteristics to the grayscale values of ideal interference fringes. Therefore, with the combination of DDIPHM and BEMD, by utilizing the characteristics of IMF1, the digital hologram was optimized with purified interference fringes, enhancing the real-image term simultaneously. Finally, the validity of the proposed method was verified by experimental results on a microstep.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app