Add like
Add dislike
Add to saved papers

Regulating glioma stem cells by hypoxia through the Notch1 and Oct3/4 signaling pathway.

Oncology Letters 2018 November
To investigate the effects of hypoxia on the features of cancer stem cells in the glioma cancer U87 cell line and underlying mechanism, stem cell markers and features in U87 were studied under the hypoxic and normoxic culture conditions by reverse transcription-quantitative polymerase chain reaction, western blot analysis, MTT, a colony formation test and flow cytometry. Compared to the normoxic group, the cluster of differentiation 133+ phenotype, clone formation rate and cell vitality were significantly elevated in U87 cells cultured in a hypoxic microenvironment. Also, the mRNA and protein expression of neurogenic locus notch homolog protein 1 (Notch1) and Oct3/4 were significantly elevated in U87 cells cultured in a hypoxic microenvironment, however, transcription factor SOX-2 expression was not significantly changed. These results indicate that hypoxia can promote the proliferation of glioma stem cells and maintain the characteristics of stem cells through the activation of Notch1 and Oct3/4 or Notch1 activation, affecting the biological characteristics of glioma cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app