Add like
Add dislike
Add to saved papers

Altered expression of the core circadian clock component PERIOD2 contributes to osteoarthritis-like changes in chondrocyte activity.

In osteoarthritis, chondrocytes undergo a phenotype shift characterised by reduced expression of SOX9 (sry-box 9) and increased production of cartilage-degrading enzymes, e.g. MMP13 (matrix metalloproteinase 13) and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5). The chondrocyte clock is also altered. Specifically, the peak level of PER2 is elevated, but peak level of BMAL1 reduced in osteoarthritic chondrocytes. The purpose of this study was to determine whether increased PER2 expression causes disease-associated changes in chondrocyte activity and to identify whether known risk factors for osteoarthritis induce changes in PER2 and BMAL1 expression. Primary human chondrocytes isolated from macroscopically normal cartilage were serum-starved overnight then re-fed with serum-replete media with/without interleukin 1β (IL-1β) (10 ng/mL), hydrogen peroxide (100 µM) or basic calcium phosphate (BCP) crystals (50 µg/mL). Peak level of BMAL1 was lower, whereas PER2 levels remained elevated for longer, in chondrocytes treated with IL-1β, hydrogen peroxide or BCP crystals compared to untreated cells. Levels of SOX9 were lower, whereas levels of ADAMTS5 and MMP13 were higher, in chondrocytes exposed to any of the three treatments compared to untreated cells. Knockdown of PER2 using siRNA partially abrogated the effects of each treatment on chondrocyte phenotype marker expression. Similarly, in chondrocytes isolated from osteoarthritic cartilage PER2 knockdown was associated with increased SOX9, reduced ADAMTS5 and reduced RNA and protein levels of MMP13 indicating partial mitigation of the osteoarthritic phenotype. Conversely, further ablation of BMAL1 expression in osteoarthritic chondrocytes resulted in a further reduction in SOX9 and increase in MMP13 expression. Overexpression of PER2 in the H5 chondrocyte cell line led to increased ADAMTS5 and MMP13 and decreased SOX9 expression. Localised inflammation, oxidative stress and BCP crystal deposition in osteoarthritic joints may contribute to disease pathology by inducing changes in the chondrocyte circadian clock.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app