Add like
Add dislike
Add to saved papers

Deep FisherNet for Image Classification.

Despite the great success of convolutional neural networks (CNNs) for the image classification task on data sets such as Cifar and ImageNet, CNN's representation power is still somewhat limited in dealing with images that have a large variation in size and clutter, where Fisher vector (FV) has shown to be an effective encoding strategy. FV encodes an image by aggregating local descriptors with a universal generative Gaussian mixture model (GMM). FV, however, has limited learning capability and its parameters are mostly fixed after constructing the codebook. To combine together the best of the two worlds, we propose in this brief a neural network structure with FV layer being part of an end-to-end trainable system that is differentiable; we name our network FisherNet that is learnable using back propagation. Our proposed FisherNet combines CNN training and FV encoding in a single end-to-end structure. We observe a clear advantage of FisherNet over plain CNN and standard FV in terms of both classification accuracy and computational efficiency on the challenging PASCAL visual object classes object classification and emotion image classification tasks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app