Add like
Add dislike
Add to saved papers

Prostaglandin D 2 Levels Regulate CD103 + Conventional Dendritic Cell Activation in Neonates During Respiratory Viral Infection.

Viral Immunology 2018 November 8
During respiratory viral infection, conventional dendritic cells (cDCs) take up antigen and migrate to the draining lymph nodes to present viral antigen and activate cytotoxic T lymphocytes; however, regulation of cDC activation and migration may be age dependent. In this study, we used a mouse model of paramyxoviral infection (Sendai virus) and demonstrated that cDCs, which have migrated from lungs to the draining lymph nodes, are delayed in expressing activation markers in neonatal mice compared with adults. Neonatal lung cDCs expressed reduced levels of MHC Class II (major histocompatibility complex II) and CCR7 (chemokine receptor type 7) on postinfection days 3 and 5, respectively. The level of the CCR7 ligand CCL19 was significantly reduced in neonatal lungs during the course of viral infection. Interestingly, the arachidonic acid metabolite prostaglandin D2 (PGD2 ) was present at significantly higher levels in neonatal bronchoalveolar lavage fluid compared with adults. This was associated with increased expression of lipocalin PGD2 synthase mRNA levels in neonatal lungs and in isolated neonatal tracheal epithelial cells. Although thymic stromal lymphopoietin (TSLP) expression has been associated with increased PGD2 production, we found that TSLP levels were reduced in neonatal lungs. Importantly, blocking PGD2 function using a prostaglandin D2 receptor 1 (DP1) antagonist restored cDC activation in neonates. Together, these data suggest that cDC activation in neonates is delayed by a PGD2 mechanism and associated decreased chemokine signals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app