Add like
Add dislike
Add to saved papers

An adaptive multi-stage phase I dose-finding design incorporating continuous efficacy and toxicity data from multiple treatment cycles.

Phase I designs traditionally use the dose-limiting toxicity (DLT), a binary endpoint from the first treatment cycle, to identify the maximum-tolerated dose (MTD) assuming a monotonically increasing relationship between dose and efficacy. In this article, we establish a general framework for a multi-stage adaptive design where we jointly model a continuous efficacy outcome and continuous/quasi-continuous toxicity endpoints from multiple treatment cycles. The normalized Total Toxicity Profile (nTTP) is used as an illustration for quasi-continuous toxicity endpoints, and we replace DLT with nTTP to take into account multiple grades and types of toxicities. In addition, the proposed design accommodates non-monotone dose-efficacy relationships, and longitudinal toxicity data in effort to capture the adverse events from multiple cycles. Stage 1 of our design uses toxicity data to perform dose-escalation and identify a set of initially allowable (safe) doses; stage 2 of our design incorporates an efficacy outcome to update the set of allowable doses for each new cohort and randomizes the new cohort of patients to the allowable doses with emphasis towards those with higher predicted efficacy. Stage 3 uses all data from all treated patients at the end of the trial to make final recommendations. Simulations showed that the design had a high probability of making the correct dose selection and good overdose control across various dose-efficacy and dose-toxicity scenarios. In addition, the proposed design allows for early termination when all doses are too toxic. To our best knowledge, the proposed dual-endpoint dose-finding design is the first such study to incorporate multiple cycles of toxicities and a continuous efficacy outcome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app