Add like
Add dislike
Add to saved papers

First-principles calculations and Raman scattering evidence for local symmetry lowering in rhombohedral ilmenite: temperature- and pressure-dependent studies.

ATiO3 -type materials may exist in two different crystalline forms: the perovskite and ilmenite. While many papers have devoted their attention to evaluating the structural properties of the perovskite phase, the structural stability of the ilmenite one still remains unsolved. Here, we present our results based on the lattice dynamics and first-principles calculations (density functional theory) of the CdTiO3 ilmenite phase, which are confronted with experimental data obtained through micro Raman spectroscopy that is a very good tool to probe the local crystal structure. Additional Raman bands, which are not foreseen from group-theory for the ilmenite rhombohedral structure, appeared in both low temperature (under vacuum condition) and high-pressure (at room temperature) spectra. The behavior can be explained by considering the local loss of inversion symmetry operation which reduces the overall space group from [Formula: see text] ([Formula: see text]) to [Formula: see text] ([Formula: see text]). Our results can also be extended to other ilmenite-type compositions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app