Add like
Add dislike
Add to saved papers

Berberine alleviates oxidized low-density lipoprotein-induced macrophage activation by downregulating galectin-3 via the NF-κB and AMPK signaling pathways.

Macrophage activation plays a central role in neoatherosclerosis and in-stent restenosis after percutaneous coronary intervention (PCI). Galectin-3, mainly expressed on macrophages, is an important regulator of inflammation. This study aimed to investigate the effects of berberine (BBR) on oxidized low-density lipoprotein (ox-LDL)-induced macrophage activation and galectin-3 expression and their underlying mechanisms. THP-1-derived macrophages were pretreated with BBR prior to stimulation with ox-LDL. Galectin-3 expression was measured by real-time PCR, Western blotting, and confocal microscopy. Macrophage activation was assessed by lipid accumulation, expression of inflammatory cytokines, and CD11b and CD86. Plasma galectin-3 levels were measured in patients undergoing PCI at baseline and after BBR treatment for 3 months. BBR suppressed ox-LDL-induced upregulation of galectin-3 and macrophage activation. Overexpression of galectin-3 intervened the inhibitory effect of BBR on macrophage activation. BBR activated phospho-AMPK and inhibited phospho-NF-κB p65 nuclear translocation. AMPK inhibition and NF-κB activation abolished the inhibitory effects of BBR on galectin-3 expression and macrophage activation. Combination of BBR and rosuvastatin exerted greater effects than BBR or rosuvastatin alone. However, BBR treatment did not further reduce plasma galectin-3 after PCI in patients receiving standard therapy. In conclusion, BBR alleviates ox-LDL-induced macrophage activation by downregulating galectin-3 via the NF-κB and AMPK signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app