Add like
Add dislike
Add to saved papers

Acrylamide-induced adverse cerebellar changes in rats: possible oligodendrogenic effect of omega 3 and green tea.

BACKGROUND: Humans are widely exposed to acrylamide (ACR) and its neurotoxicity is a significant public health issue attracting wide attention. The aim of the study was to investigate ACR-induced adverse cerebellar changes in rats and study the possible oligodendrogenic effect of omega 3 and green tea.

MATERIALS AND METHODS: Twenty-four adult albino rats weighing 150-200 g were randomly divided into four equal groups (6 rats each): control group (Group I), the rats that received ACR 45 mg/kg/day (Group II), the rats that received ACR concomitant with omega 3 at a dosage of 200 mg/kg/day (Group III), the rats that received ACR concomitant with green tea dissolved in drinking water at a dosage of 5 g/L (Group IV). The rats were euthanized after 8 weeks of the experiment. Malondialdehyde (MDA) and glutathione (GSH) were measured in cerebellar homogenates. Sections of 5 μm thickness from specimens from the cerebellum were stained with haematoxylin and eosin, silver stain and immunohistochemical stains: platelet-derived growth factor alpha (PDGFα; for oligodendrocytes), glial fibrillary acidic protein (GFAP; for astrocytes) and BCL2 (antiapoptotic).

RESULTS: Omega 3 and green tea had improved MDA and GSH as compared to the ACR group. Histologically, the ACR group showed variable degrees of cellular degeneration. Omega 3 had induced oligodendrogenesis in Group III. The optical density of silver stain was significantly (p < 0.05) increased in Groups III and IV as compared to the ACR group. Area per cent of positive PDGFα was significantly increased in the ACR + omega 3 group as compared to the ACR group. Area per cent of positive GFAP was significantly decreased in Groups III and IV as compared to the ACR group. Area per cent of positive BCL2 was significantly increased in the omega 3-trated group as compared to the ACR group.

CONCLUSIONS: Concomitant administration of omega 3 or green tea with ACR might mitigate the adverse cerebellar changes caused by ACR thanks to an oligodendrogenic effect of omega 3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app