Add like
Add dislike
Add to saved papers

Anaerobic Co-Digestion of Vegetable and Fruit Market Waste in LBR + CSTR Two-Stage Process for Waste Reduction and Biogas Production.

Vegetable and fruit waste (VFW) is becoming a heavy burden of municipal waste disposal because of its huge amount, but it is a potentially valuable resource that can be developed into high value products such as methane. Conventional anaerobic digestion processes are not suitable for solving the problem of easy acidification of VFW. Thus, a two-stage laboratory-scale anaerobic digestion system was assembled for waste reduction and biogas production of VFW in the mesophilic temperatures. The biphasic system consists of a 70-L leach bed reactor (LBR) and a 35-L continuous stirred tank reactor (CSTR). Water is sprinkled over the material to enhance the extraction process of acidification phase. The leachate was then transferred to the CSTR for biogas production. Batch digestion was lasted 120 h until no biogas was produced. Leachate with a volatile fatty acid (VFA) concentration of 7.6 g/L was obtained within 10 h. The results showed that overall 70.9% of the volatile solids (VS) was removed in the solid-phase system. Over 90% of VFAs were reduced in the methanogenic reactor, and it has been observed that the maximum biogas production rate was 51.26 mL/(d gVS). The maximum methane concentration in the produced biogas was 71%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app