Add like
Add dislike
Add to saved papers

New mechanisms of phenytoin in calcium homeostasis: competitive inhibition of CD38 in hippocampal cells.

PURPOSE: Phenytoin is a major anticonvulsant drug that is effective to improve arrhythmia and neuropathic pain. According to early works, phenytoin affected cell membrane depolarization by sodium channel blocking, guanylyl and adenylyl cyclase suppression that cause to intracellular Na+ and Ca2+ downregulation. This study was aimed to clarify some ambiguities in pathophysiological action of phenytoin by in vitro and molecular docking analyses.

METHODS: In this study intracellular free Ca2+ of primary culture of embryonic mouse hippocampus evaluated via Fura 2 as fluorescent probe. The effects of phenytoin on ADP ribosyl cyclase activity was assessed by recently developed fluorometric assay. Molecular docking simulation was also implemented to investigate the possible interaction between phenytoin and CD38.

RESULTS: Our results confirmed phenytoin competitively inhibits cyclase activity of CD38 (IC50  = 8.1 μM) and reduces cADPR content. cADPR is a Ca2+ -mobilising second messenger which binds to L-type calcium channel and ryanodine receptors in cell and ER membrane and increases cytosolic free Ca2+ . Ca2+ content of cells decreased significantly in the presence of phenytoin in a dose dependent manner (IC50  = 12.74 µM). Based on molecular docking analysis, phenytoin binds to deeper site of CD38 active site, mainly via hydrophobic interactions and consequently inhibits proper contact of substrate with catalytic residues specially Glu 226, Trp 186, Thr221.

CONCLUSION: Taken together, one of the anticonvulsant mechanisms of phenytoin is Ca2+ inhibition from CD38 pathway, therefore could be used in disorders that accompanied by CD38 over production or activation such as heart disease, depression, brain sepsis, airway disease, oxidative stress and inflammation. Graphical abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app