Add like
Add dislike
Add to saved papers

Full-Dose PET Image Estimation from Low-Dose PET Image Using Deep Learning: a Pilot Study.

Positron emission tomography (PET) imaging is an effective tool used in determining disease stage and lesion malignancy; however, radiation exposure to patients and technicians during PET scans continues to draw concern. One way to minimize radiation exposure is to reduce the dose of radioactive tracer administered in order to obtain the scan. Yet, low-dose images are inherently noisy and have poor image quality making them difficult to read. This paper proposes the use of a deep learning model that takes specific image features into account in the loss function to denoise low-dose PET image slices and estimate their full-dose image quality equivalent. Testing on low-dose image slices indicates a significant improvement in image quality that is comparable to the ground truth full-dose image slices. Additionally, this approach can lower the cost of conducting a PET scan since less radioactive material is required per scan, which may promote the usage of PET scans for medical diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app