Add like
Add dislike
Add to saved papers

miR-365b-3p inhibits the cell proliferation and migration of human coronary artery smooth muscle cells by directly targeting ADAMTS1 in coronary atherosclerosis.

Abnormal proliferation and migration of vascular smooth muscle cells serves a crucial role in the development of atherosclerosis. Previous studies have suggested that some microRNAs (miRs) are involved in this process; however, the associated underlying molecular mechanism is unclear. In present study, human coronary artery smooth muscle cells (HCASMCs) were used to explore the function of miR-365b-3p in the coronary atherosclerosis. It was indicated that platelet-derived growth factor-BB (PDGF-BB) treatment inhibited miR-365b-3p expression and upregulated the expression of a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) in HCASMCs. Subsequently, miR-365b-3p mimic was transfected in HCASMCs to explore the function of this miR. The results of reverse transcription-quantitative polymerase chain reaction and western blot analysis indicated that overexpression of miR-365b-3p significantly downregulated ADAMTS1 expression. Functional assay results revealed that overexpression of miR-365b-3p significantly attenuated PDGF-BB-induced proliferation and migration of HCASMCs. Furthermore, the dual-luciferase reporter assay results confirmed that ADAMTS1 is a direct target gene of miR-365b-3p. This discovery proposed a novel channel of communication between ADAMTS1 and HCASMCs, and suggests a potential therapeutic approach for coronary atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app