Add like
Add dislike
Add to saved papers

Patterns of Transmission Ratio Distortion in Interspecific Lettuce Hybrids Reveal a Sex-Independent Gametophytic Barrier.

Genetics 2018 November 7
Interspecific crosses can result in progeny with reduced vitality or fertility due to genetic incompatibilities between species, a phenomenon known as hybrid incompatibility (HI). HI is often caused by a bias against deleterious allele combinations, which results in transmission ratio distortion (TRD). Here, we determined the genome-wide distribution of HI between wild lettuce, Lactuca saligna, and cultivated lettuce, L. sativa , in a set of backcross inbred lines (BILs) with single introgression segments from L. saligna introgressed into a L. sativa genetic background. Almost all BILs contained an introgression segment in a homozygous state except a few BILs, for which we were only able to obtain a single heterozygous introgression. Their inbred progenies displayed severe TRD with a bias toward the L. sativa allele and complete non-transmission of the homozygous L. saligna introgression, i.e. absolute HI. These HI might be caused by deleterious heterospecific allele combinations at two loci. We used an multi-locus segregating interspecific F2 population to identify candidate conspecific loci that can nullify the HI in BILs. Segregation analysis of developed double-introgression progenies showed nullification of three HI and proved that these HI are explained by nuclear pairwise incompatibilities. One of these digenic HI showed 29% reduced seed set and its pattern of TRD pointed to a sex-independent gametophytic barrier. Namely, this HI was caused by complete non-transmission of one heterospecific allele combination at the haploid stage, surprisingly in both male and female gametophytes. Our study shows that two-locus incompatibility systems contribute to reproductive barriers among Lactuca species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app