Add like
Add dislike
Add to saved papers

FAM129A regulates autophagy in thyroid carcinomas in an oncogene-dependent manner.

We previously proposed that high expression of FAM129A can be used as a thyroid carcinoma biomarker in preoperative diagnostic exams of thyroid nodules. Here, we identify that FAM129A expression is increased under nutrient and growth factor depletion in a normal thyroid cell line (PCCL3), overlapping with increased expression of autophagy-related protein and inhibition of AKT/mTOR/p70S6K. Supplementation of insulin, TSH and serum to the medium was able to reduce the expression of both FAM129A and autophagy-related protein and reestablish the AKT/mTOR/p70S6K axis. To determine the direct role of FAM129A on autophagy, FAM129A was transfected into PCCL3 cells. Its overexpression induced autophagic vesicles formation, evidenced by transmission electron microscopy. Co-expression of FAM129A and mCherry-EGFP-LC3B in PCCL3 showed an increased yellow puncta formation, suggesting that FAM129Ainduces autophagy. To further confirm its role on autophagy, we knockdown FAM129A in two thyroid carcinoma cell lines (TPC1 and FTC-236). Unexpectedly, FAM129A silencing increased autophagic flux, suggesting that FAM129A inhibits autophagy in these models. We next co-transfected PCCL3 cells with FAM129A and RET/PTC1 and tested autophagy in this context. Co-expression of FAM129A and RET/PTC1 oncogene in PCCL3 cells, inhibited RET/PTC1-induced autophagy. Together, our data suggest that, in normal cells FAM129A induces autophagy in order to maintain cell homeostasis and provide substrates under starvation conditions. Instead, in cancer cells, decreased autophagy may help the cells to overcome cell death. FAM129A regulates autophagy in a cell- and/or context-dependent manner. Our data reinforce the concept that autophagy can be used as a strategy for cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app