Add like
Add dislike
Add to saved papers

Imputation of faulty magnetic sensors with coupled Bayesian and Gaussian processes to reconstruct the magnetic equilibrium in real time.

A Bayesian with Gaussian process-based numerical method to impute a few missing magnetic signals caused by impaired magnetic probes during tokamak operations is developed such that the real-time reconstruction of magnetic equilibria, whose performance strongly depends on the measured magnetic signals and their intactness, is affected minimally. Likelihood of the Bayesian model constructed with Maxwell's equations, specifically Gauss's law for magnetism and Ampère's law, results in an infinite number of solutions if two or more magnetic signals are missing. This undesirable characteristic of the Bayesian model is remediated by coupling the model with the Gaussian process. Our proposed numerical method infers nine non-consecutive missing magnetic signals correctly in less than 1 ms suitable for the real-time reconstruction of magnetic equilibria during tokamak operations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app