Add like
Add dislike
Add to saved papers

HERV-W env regulates calcium influx via activating TRPC3 channel together with depressing DISC1 in human neuroblastoma cells.

Journal of Neurovirology 2018 November 6
The activation and involvement of human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1) have been reported in several neuropsychiatric disorders, including schizophrenia, as well as in multiple sclerosis (MS). Dysregulation of intracellular calcium content is also involved in the pathogenesis of these diseases. Our previous studies showed that HERV-W env overexpression results in activation of small conductance Ca2+ -activated K+ channel protein 3 (SK3), a potential risk factor for schizophrenia. In the present study, we aimed to elucidate the relationship between HERV-W env and calcium signaling in schizophrenia. Our results showed that HERV-W env could induce Ca2+ influx in two human neuroblastoma cell lines and upregulate the expression and activation of TRPC3 in cells. The abnormal increase in intracellular Ca2+ concentration was inhibited by addition of the TRPC3 channel blocker pyr3, demonstrating that the Ca2+ influx induced by HERV-W env was TRPC3-dependent. Further experiments showed that HERV-W env overexpression downregulated DISC1, while knockdown of DISC1 promoted activation of TRPC3 without affecting TRPC3 expression. In conclusion, HERV-W env induced Ca2+ influx in human neuroblastoma cells by activating the TRPC3 channel through directly regulating its expression or downregulating DISC1, which could also increase TRPC3 activation without affecting TRPC3 expression. These findings provide new insights into how HERV-W env affects neuronal activity and contributes to the pathogenesis of schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app