Add like
Add dislike
Add to saved papers

Solving mazes with single-molecule DNA navigators.

Nature Materials 2018 November 6
Molecular devices with information-processing capabilities hold great promise for developing intelligent nanorobotics. Here we demonstrate a DNA navigator system that can perform single-molecule parallel depth-first search on a ten-vertex rooted tree defined on a two-dimensional DNA origami platform. Pathfinding by the DNA navigators exploits a localized strand exchange cascade, which is initiated at a unique trigger site on the origami with subsequent automatic progression along paths defined by DNA hairpins containing a universal traversal sequence. Each single-molecule navigator autonomously explores one of the possible paths through the tree. A specific solution path connecting a given pair of start and end vertices can then be easily extracted from the set of all paths taken by the navigators collectively. The solution path laid out on origami is illustrated with single-molecule imaging. Our approach points towards the realization of molecular materials with embedded computational functions operating at the single-molecule level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app