Add like
Add dislike
Add to saved papers

Receptor-Ligand Interaction Mediates Targeting of Endothelial Colony Forming Cell-derived Exosomes to the Kidney after Ischemic Injury.

Scientific Reports 2018 November 6
Endothelial colony forming cell (ECFC)-derived exosomes protect mice against ischemic kidney injury, via transfer of microRNA-(miR)-486-5p. Mechanisms mediating exosome recruitment to tissues are unclear. We hypothesized that ECFC exosomes target ischemic kidneys, involving interaction between exosomal CXC chemokine receptor type 4 (CXCR4) and stromal cell-derived factor (SDF)-1α. Ischemia-reperfusion was induced in mice by bilateral renal vascular clamp, with intravenous infusion of exosomes at reperfusion. Optical imaging determined exosome biodistribution, and miR-486-5p was measured by real-time PCR. Human umbilical vein endothelial cells (HUVECs) were cultured to study the CXCR4/SDF-1α interaction. Targeting of administered exosomes to ischemic kidneys was detected 30 min and 4 hrs after reperfusion. Exosomes increased miR-486-5p levels only in kidneys, within proximal tubules, glomeruli, and endothelial cells. Uptake of fluorescently-labeled exosomes into HUVECs, and exosomal transfer of miR-486-5p were enhanced by hypoxia, effects blocked by neutralizing antibody to SDF-1α or by the CXCR4 inhibitor plerixafor. Infusion of ECFC exosomes prevented ischemic kidney injury in vivo, an effect that was not observed when exosomes were pre-incubated with plerixafor. These data indicate that ECFC exosomes selectively target the kidneys after ischemic injury, with rapid cellular transfer of miR486-5p. Targeting of exosomes may involve interaction of CXCR4 with endothelial cell SDF-1α.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app