Add like
Add dislike
Add to saved papers

Anti-HB-EGF Antibody-Mediated Delivery of siRNA to Atherosclerotic Lesions in Mice.

For atherosclerotic cardiovascular diseases (ACD), gene therapy may be a potential therapeutic strategy; however, lack of effective and safe methods for gene delivery to atherosclerotic plaques have limited its potential therapeutic applications. To overcome this limitation, we developed a novel antibody-based gene delivery system (anti-HB-EGF/NA vector) by chemically crosslinking antibodies against human heparin-binding epidermal growth factor-like growth factor (HB-EGF). It has been shown to be excessively expressed in human atherosclerotic plaques and NeutrAvidin (NA) for conjugating biotinylated siRNA. Immunofluorescence staining and quantitative flow cytometry analysis using human HB-EGF-expressing cells showed both antibody-mediated selective cellular targeting and efficient intracellular delivery of conjugated biotin-fluorescence. Moreover, we demonstrated antibody-mediated significant and selective gene knockdown via conjugation with anti-HB-EGF/NA vector and biotinylated siRNA (anti-HB-EGF/NA/b-siRNA) in vitro. Furthermore, using high fat-fed human HB-EGF knock-in and apolipoprotein E-knockout (Hbegf hz/hz; Apoe-/-) mice, we demonstrated that the anti-HB-EGF/NA vector, conjugating biotin-fluorescence, increasingly accumulated within the atherosclerotic plaques of the ascending aorta in which human HB-EGF expression levels were highly elevated. Moreover, in response to a single intravenous injection of anti-HB-EGF/NA/b-siRNA in a dose-dependent manner, qPCR analysis of laser-dissected atherosclerotic plaques of the ascending aorta showed significant knockdown of the reporter gene expression. These results suggest that the anti-HB-EGF antibody-mediated siRNA delivery could be a promising delivery system for gene therapy of ACD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app