Add like
Add dislike
Add to saved papers

Comparison of RNAi knockdown effect of tyramine receptor 1 induced by dsRNA and siRNA in brains of the honey bee, Apis mellifera.

RNA interference (RNAi) is a powerful tool for artificially manipulating gene expression in diverse organisms. In the honey bee, Apis mellifera, both long double stranded RNA (dsRNA) and small interference RNA (siRNA) have been successfully used to reduce targeted gene expression and induce specific phenotypes. However, whether dsRNA and siRNA have different effects and efficiencies in gene silencing has never been investigated in honey bees. Thus, we tested the effect of dsRNA and siRNA on the tyramine receptor 1 (tyr1), which encodes a receptor of neurotransmitter tyramine, in honey bee brains at mRNA and protein levels over time. We found that both dsRNA and siRNA achieved successful gene knockdown. The siRNA mixes affected tyr1 gene expression faster than dsRNA, and the duration of the knockdown between dsRNA and siRNA varied. We also found that the turnover rate of TYR1 protein was relatively fast, which is consistent with its role as a neurotransmitter receptor. Our study reveals the different efficiencies of dsRNA and siRNA in honey bee brains. We show that consideration of the gene regions targeted by RNAi, prior screening for RNAi molecules and combing siRNAs are important strategies to enhance RNAi efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app