Add like
Add dislike
Add to saved papers

Neighbor Diversity Regulates the Productivity of Coral Assemblages.

Current Biology : CB 2018 November 20
Sustaining ecological functions as biodiversity changes will be a major challenge in the 21st century [1]. However, our understanding of the relationship between biodiversity and ecosystem function is still emerging on tropical coral reefs [2], where reef-building corals form highly productive assemblages [3, 4] and species respond in different ways to their neighbors [5] and their environment (e.g., water flow) [6]. Experimental coral communities were assembled to quantify the performance of coral colonies with and without neighbors and in the presence of conspecifics versus heterospecifics. Under higher flow, we identified a positive effect of coral species richness on primary productivity (gross and net photosynthesis) indicated by a 53% increase in productivity in multispecies assemblages (2-4 species) relative to monocultures. Productivity in monocultures was predicted by surface areas associated with different species morphologies. In contrast, multispecies assemblages maintained high levels of productivity even in the absence of the most productive species, reflecting non-additive effects of species richness on community functioning. Assemblage performances were regulated by positive and negative interactions between colonies, with many colonies performing better among heterospecific neighbors than in isolation (facilitation). Facilitation occurred primarily among flow-sensitive taxa with simple morphologies and did not occur under lower flow, suggesting that modifications to flow microclimates by corals generated beneficial, interspecific interactions. Our results show that competition and facilitation among neighbors may be important mechanisms regulating coral assemblage productivity in variable environments. Furthermore, shifts in the diversity and identity of neighbors can impair these interactions, with potentially widespread consequences for coral community functioning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app