Add like
Add dislike
Add to saved papers

Detection of Tilletia caries, Tilletia laevis and Tilletia controversa wheat grain contamination using loop-mediated isothermal DNA amplification (LAMP).

The study describes a novel diagnostic protocol based on a loop-mediated isothermal DNA amplification (LAMP) for identification of wheat grains infection by Tilletia laevis, Tilletia caries (common bunt) and Tilletia controversa (draft bunt). The presented data showed that the LAMP analysis is a simple, specific and rapid method that could be used for detection of Tilletia spp. in contaminated grain samples. The lowest DNA concentration required for the successful detection of Tilletia spp. strains were estimated to be 0.001 ng/μl. Simultaneously the detection limit for wheat grain contamination by T. caries and T. laevis teliospores was estimated at 20 μg per 100 g of grain. For T. controversa detection limit was lower and was approximately 20 mg of teliospores per 100 g of grain. The negative results of the LAMP reactions were achieved for the most common fungal species colonizing wheat grain like Fusarium spp., Alternaria sp., Cladosporium sp., Helminthosporium sp., and Penicillium sp.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app