Add like
Add dislike
Add to saved papers

Reduced exosome miR-425 and miR-744 in the plasma represents the progression of fibrosis and heart failure.

Heart failure creates a leading public health burden worldwide and cardiac fibrosis is a hallmark of pathological cardiac remodeling which was found in HF patients. In this study, we detected the expression of 9 candidate miRNAs in the plasma exosome samples from 31 HF patients, and found the level of miR-21, miR-425 and miR-744 was altered. The downregulation of miR-425 and miR-744 was also found in angiotensin II treated cardiac fibroblasts. Through functional study, we identified that the reduction of miR-425 and miR-744 relates to overexpression of collagen 1 and α-SMA, which result in fibrogenesis of cardiac fibroblasts. Conversely, overexpression of miR-425 or miR-744 in cultured cardiac fibroblasts significantly abrogates angiotensin induced collagen formation and fibrogenesis. Finally, we confirmed that TGFβ1 is a direct target of miR-425 and miR-744 by dual luciferase assay and immunoblotting. Our data demonstrate that miR-425 and miR-744 function as negative regulators of cardiac fibrosis by suppression TGFβ1 expression, and miR-425 and miR-744 level in the plasma exosomes has the potential to be a biomarker to predict cardiac fibrosis and heart failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app