Add like
Add dislike
Add to saved papers

CPP-ACP Promotes SnF 2 Efficacy in a Polymicrobial Caries Model.

Dental caries is associated with plaque dysbiosis, leading to an increase in the proportions of acidogenic and aciduric bacteria at the expense of alkali-generating commensal species. Stannous fluoride (SnF2 ) slows the progression of caries by remineralization of early lesions but has also been suggested to inhibit glycolysis of aciduric bacteria. Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) promotes fluoride remineralization by acting as a salivary biomimetic that releases bioavailable calcium and phosphate ions, and the peptide complex has also been suggested to modify plaque composition. We developed a polymicrobial biofilm model of caries using 6 bacterial species representative of supragingival plaque that were cultured on sound human enamel and pulsed with sucrose 4 times a day to produce a high cariogenic challenge. We used this model to explore the mechanisms of action of SnF2 and CPP-ACP. Bacterial species in the biofilms were enumerated with 16S rRNA gene sequence analyses, and mineral loss and lesion formation were determined in the enamel directly under the polymicrobial biofilms via transverse microradiography. The model tested the twice-daily addition of SnF2 , CPP-ACP, or both. SnF2 treatment reduced demineralization by 50% and had a slight effect on the composition of the polymicrobial biofilm. CPP-ACP treatment caused a similar inhibition of enamel demineralization (50%), a decrease in Actinomyces naeslundii and Lactobacillus casei abundance, and an increase in Streptococcus sanguinis and Fusobacterium nucleatum abundance in the polymicrobial biofilm. A combination of SnF2 and CPP-ACP resulted in a greater suppression of the acidogenic and aciduric bacteria and a significant 72% inhibition of enamel demineralization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app