Add like
Add dislike
Add to saved papers

High-speed polarization imaging of dynamic collagen fiber realignment in tendon-to-bone insertion region.

A high-speed polarization imaging instrument is demonstrated to be capable of measuring the collagen fiber alignment orientation and alignment strength during high-displacement rate dynamic loading at acquisition rates up to 10 kHz. The implementation of a high-speed rotating quarter wave plate and high-speed camera in the imaging system allows a minimum measurement acquisition time of 6 ms. Sliced tendon-to-bone insertion samples are loaded using a modified drop tower with an average maximum displacement rate of 1.25  m  /  s, and imaged using a high-speed polarization imaging instrument. The generated collagen fiber alignment angle and strength maps indicate the localized deformation and fiber realignment in tendon-to-bone samples during dynamic loading. The results demonstrate a viable experimental method to monitor collagen fiber realignment in biological tissue under high-displacement rate dynamic loading.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app