Add like
Add dislike
Add to saved papers

Increased right amygdala metabolite concentrations in the absence of atrophy in children and adolescents with PTSD.

Previous studies have shown that posttraumatic stress disorder (PTSD) is associated with dysfunction of the limbic system, in which the amygdala plays an important role. The purpose of this study was to evaluate whether the neurochemical concentrations assessed by proton magnetic resonance spectroscopy (1 H-MRS) in the amygdala are abnormal in children and adolescents with PTSD. Twenty-eight pediatric PTSD patients (11 boys, 17 girls) and 24 matched trauma-exposed control subjects (9 boys, 15 girls) underwent magnetic resonance brain imaging and 1 H-MRS of the bilateral amygdalae. The concentrations of N-acetylaspartate (NAA), myo-inositol (mI), total creatine (tCr) and total choline (tCho) in the right amygdala were significantly increased in PTSD patients compared with trauma-exposed control subjects. There were significant group-by-age interactions in the left amygdala NAA and right amygdala mI concentrations: older pediatric patients with PTSD had higher left amygdala NAA concentration and younger patients had higher right amygdala mI concentration than trauma-exposed control subjects. There was also a significant correlation between right mI concentration and time since trauma in PTSD patients. Finally, there was significant group-by-age interaction in the left amygdala volume; intragroup analysis revealed that the right amygdala volume was significantly lower than the left in the PTSD group, but not in the control group. These neurochemical abnormalities of the amygdala may indicate that dysfunctions of both neurons and glial cells are involved in the pathology of pediatric PTSD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app