Add like
Add dislike
Add to saved papers

Different crystalline forms of titanium dioxide nanomaterial (rutile and anatase) can influence the toxicity of copper in golden mussel Limnoperna fortunei?

Aquatic Toxicology 2018 October 23
Although some studies have showed the effects of different crystalline structures of nTiO2 (anatase and rutile) and their applicability in several fields, few studies has analyzed the effect of coexposure with other environmental contaminants such as copper. Thus, the objective of this study was to evaluate if the coexposure to nTiO2 (nominal concentration of 1 mg/L; anatase or rutile) can increase the incorporation and toxic effect induced by Cu (nominal concentration of 56 μg/L) in different tissues of Linmoperna fortunei after 120 h of exposure. Our results showed that the coexposure increased the accumulation of Cu in the gills and adductor muscle independently of the crystalline form and can positively or negatively modulate the antioxidant system, depending on the tissue analyzed. However, exposure only to rutile nTiO2 induced damage in the adductor muscle evidenced by the infiltration of hemocytes in this tissue. Additionally, histomorphometric changes based on fractal dimension analysis showed that coexposure to both forms of nTiO2 induced damage in the same tissue. These results suggest that both crystalline forms exhibited toxicity depending on the analyzed tissue and that coexposure of nTiO2 with Cu may be harmful in L. fortunei, indicating that increased attention to the use and release of nTiO2 in the environment is needed to avoid deleterious effects in aquatic biota.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app