Add like
Add dislike
Add to saved papers

A Guide to Run Affinity Screens Using Differential Scanning Fluorimetry and Surface Plasmon Resonance Assays.

Over the past 30 years, drug discovery has evolved from a pure phenotypic approach to an integrated target-based strategy. The implementation of high-throughput biochemical and cellular assays has enabled the screening of large compound libraries which has become an important and often times the main source of new chemical matter that serve as starting point for medicinal chemistry efforts. In addition, biophysical methods measuring the physical interaction (affinity) between a low molecular weight ligand and a target protein became an integral part of hit validation/optimization to rule out false positives due to assay artifacts. Recent advances in throughput, robustness, and sensitivity of biophysical affinity screening methods have broadened their application in hit identification and validation such that they can now complement classical functional readouts. As a result, new target classes can be accessed that have not been amenable to functional assays. In this chapter, two affinity screening methods, differential scanning fluorimetry and surface plasmon resonance, which are broadly utilized in both academia and pharmaceutical industry are discussed in respect to their use in hit identification and validation. These methods exemplify how assays which differ in complexity, throughput, and information content can support the hit identification/validation process. This chapter focuses on the practical aspects and caveats of these techniques in order to enable the reader to establish their own affinity-based screens in both formats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app