Add like
Add dislike
Add to saved papers

The revised Cerebral Recovery Index improves predictions of neurological outcome after cardiac arrest.

OBJECTIVE: Analysis of the electroencephalogram (EEG) background pattern helps predicting neurological outcome of comatose patients after cardiac arrest (CA). Visual analysis may not extract all discriminative information. We present predictive values of the revised Cerebral Recovery Index (rCRI), based on continuous extraction and combination of a large set of evolving quantitative EEG (qEEG) features and machine learning techniques.

METHODS: We included 551 subsequent patients from a prospective cohort study on continuous EEG after CA in two hospitals. Outcome at six months was classified as good (Cerebral Performance Category (CPC) 1-2) or poor (CPC 3-5). Forty-four qEEG features (from time, frequency and entropy domain) were selected by the least absolute shrinkage and selection operator (LASSO) method and used in a Random Forests classification system. We trained and evaluated the system with 10-fold cross validation. For poor outcome prediction, the sensitivity at 100% specificity (Se100 ) and the area under the receiver operator curve (AUC) were used as performance of the prediction model. For good outcome, we used the sensitivity at 95% specificity (Se95 ).

RESULTS: Two hundred fifty-six (47%) patients had a good outcome. The rCRI predicted poor outcome with AUC = 0.94 (95% CI: 0.83-0.91), Se100 = 0.66 (0.65-0.78), and AUC = 0.88 (0.78-0.93), Se100 = 0.60 (0.51-0.75) at 12 and 24 h after CA, respectively. The rCRI predicted good outcome with Se95  = 0.72 (0.61-0.85) and 0.40 (0.30-0.51) at 12 and 24 h after CA, respectively.

CONCLUSIONS: Results obtained in this study suggest that with machine learning algorithms and large set of qEEG features, it is possible to efficiently monitor patient outcome after CA. We also demonstrate the importance of selection of optimal performance metric to train a classifier model for outcome prediction.

SIGNIFICANCE: The rCRI is a sensitive, reliable predictor of neurological outcome of comatose patients after CA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app