Add like
Add dislike
Add to saved papers

Investigation of Survival and Migration Potential of Differentiated Cardiomyocytes Transplanted With Decellularized Heart Scaffold.

Mesenchymal stem cell-derived cardiomyocytes are employed as a source for myocardial cell transplantation as well as for tissue engineering in decellularized tissue scaffolds. The present study aimed to investigate the survival and migration potential of differentiated cardiomyocytes integrated to decellularized scaffolds after implantation into retroperitoneum of rats, and to assess the feasibility of their ectopic use for future cardiovascular tissue engineering. For this purpose, adipose tissue derived mesenchymal stem cells (AdMSCs) were first isolated. Cells were labeled by bromodeoxyuridine (BrdU). Decellularized cardiac tissue scaffolds were acquired by application of ionic and non-ionic detergents and the labeled differentiated cells were seeded onto these tested decellularized scaffolds. After 1, 2, and 4 weeks of implantation, either cell free scaffold (CFS) or cell scaffold (CS) composites were examined by various techniques for ectopic migration potential of the implanted cells and interaction between the seeded cells on scaffolds. Throughout the 1st and 2nd weeks of implantation, positively stained cells were observed in renal tissue samples. Observations, for cardiomyocytes-specific gene expression during weeks 1, 2, and 4, showed potential increased over each time period. A reverse transcription polymerase chain reaction (RT-PCR) results revealed an increased interaction between cells seeded on scaffolds, however CFS test groups showed no significant difference in gene expression. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app