Add like
Add dislike
Add to saved papers

Oxidized hemoglobin forms contribute to NLRP3 inflammasome-driven IL-1β production upon intravascular hemolysis.

Damage associated molecular patterns (DAMPs) are released form red blood cells (RBCs) during intravascular hemolysis (IVH). Extracellular heme, with its pro-oxidant, pro-inflammatory and cytotoxic effects, is sensed by innate immune cells through pattern recognition receptors such as toll-like receptor 4 and nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3), while free availability of heme is strictly controlled. Here we investigated the involvement of different hemoglobin (Hb) forms in hemolysis-associated inflammatory responses. We found that after IVH most of the extracellular heme molecules are localized in oxidized Hb forms. IVH was associated with caspase-1 activation and formation of mature IL-1β in plasma and in the liver of C57BL/6 mice. We showed that ferrylHb (FHb) induces active IL-1β production in LPS-primed macrophages in vitro and triggered intraperitoneal recruitment of neutrophils and monocytes, caspase-1 activation and active IL-1β formation in the liver of C57BL/6 mice. NLRP3 deficiency provided a survival advantage upon IVH, without influencing the extent of RBC lysis or the accumulation of oxidized Hb forms. However, both hemolysis-induced and FHb-induced pro-inflammatory responses were largely attenuated in Nlrp3-/- mice. Taken together, FHb is a potent trigger of NLRP3 activation and production of IL-1β in vitro and in vivo, suggesting that FHb may contribute to hemolysis-induced inflammation. Identification of RBC-derived DAMPs might allow us to develop new therapeutic approaches for hemolytic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app