Add like
Add dislike
Add to saved papers

Efficient assessment of the time course of perceptual sensitivity change.

Vision Research 2018 November 13
Perceptual sensitivity is usually estimated over trials and time intervals, which results in imprecise and biased estimates when it changes rapidly over time. We develop a novel procedure, the quick Change-Detection (qCD) method, to accurately, precisely, and efficiently assess the trial-by-trial time course of perceptual sensitivity change. Based on Bayesian adaptive testing, qCD selects the optimal stimulus, and updates, trial by trial, a joint probability distribution of the parameters that quantify perceptual sensitivity change over time. We demonstrate the utility of the method in measuring the time course of dark adaptation. Simulations showed that the accuracy and precision of the estimated dark adaptation curve after one qCD run (root mean squared error (RMSE): 0.002; the half width of the 68.2% credible interval (HWCI): 0.016; standard deviation (SD): 0.020; all in log10 units) was higher than those obtained by ten runs of the quick Forced-Choice (qFC) procedure (RMSE: 0.020; HWCI: 0.032; SD: 0.031) and ten runs of a weighted up-down staircase procedure (RMSE: 0.026; SD: 0.031). Further, the dark adaptation curve obtained from one qCD run in a psychophysics experiment was highly consistent with the average of four qFC runs (RMSE = 0.076 log10 units). Overall, qCD provides a procedure to characterize the detailed time course of perceptual sensitivity change in both basic research and clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app