Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

Neutral ceramidase: Advances in mechanisms, cell regulation, and roles in cancer.

Extensive research conducted in the last three decades has identified the roles for the main bioactive sphingolipids, namely ceramide, sphingosine, and sphingosine 1-phosphate (S1P) as key regulators of cellular homeostasis, growth and death. One of the major groups of enzymes in the ceramide pathway, ceramidases, converts ceramide into sphingosine and fatty acids, with sphingosine being further metabolized to S1P. Thus, these enzymes play important roles in the network controlling the functions associated with these bioactive sphingolipids. Among the family of ceramidases, neutral ceramidase (nCDase), which is named according to its optimal pH for catalytic activity, has received increased attention in the last decade. The goal of this review is to provide a brief background on bioactive sphingolipids and the ceramidases. We then describe more recent advances on nCDase, specifically the resolution of its crystal structure and understanding its roles in cell biology and physiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app