Add like
Add dislike
Add to saved papers

Immunogenic potential of human bone marrow mesenchymal stromal cells is enhanced by hyperthermia.

Cytotherapy 2018 October 31
BACKGROUND AIMS: Bone marrow-derived mesenchymal stromal cells (MSCs) have been reported to suppress T-cell proliferation and used to alleviate the symptoms of graft-versus-host disease (GVHD). MSCs are a mixed cell population and at this time there are no tools to isolate the cells responsible for the T-cell suppression. We wanted to find a way to enhance the immune-modulatory actions of MSCs and tried varying the temperature at which they were cultured.

METHODS: We cultured human MSCs derived from healthy volunteers at different temperatures and tested their ability to switch macrophage character from pro-inflammatory to anti-inflammatory (M1 type to M2 type). Using an enzyme-linked immunosorbent assay (ELISA), we showed that when MSCs are cultured at higher temperatures their ability to induce co-cultured macrophages to produce more interleukin-10, (IL-10) (an anti-inflammatory cytokine) and less tumor necrosis factor alpha, (TNFα) (a pro-inflammatory cytokine) is increased. We performed Western blots and immunocytochemistry to screen for changes that might underlie this effect.

RESULTS: We found that in hyperthermia the heat shock protein, HSF1, translocated into the nucleus of MSCs. It appears to induce the COX2/PGE2 (Cyclooxygenase2/Prostaglandin E2) pathway described earlier as a major mechanism of MSC-directed immune-suppression.

CONCLUSION: Hyperthermia increases the efficacy of MSC-driven immune-suppression. We propose that changing the time of MSC administration to patients to mid-to-late afternoon when the body temperature is naturally highest might be beneficial. Warming the patient could also be considered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app