Add like
Add dislike
Add to saved papers

The controlled naringin release from TiO 2 nanotubes to regulate osteoblast differentiation.

To design titanium (Ti)-based biomaterials with controlled drug-releasing bioactive property, TiO2 nanotubes with a diameter of approximately 110 nm was fabricated by electrochemical anodization. TiO2 nanotubes were then loaded with naringin by direct dropping and coated with chitosan layers. The surface morphologies, chemical compositions and wettability of different substrates were characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The in vitro release behavior of naringin was evaluated by UV-visible-spectrophotometer. The biological properties of osteoblasts on different substrates were investigated in vitro. Our results indicate that the chitosan-coated naringin-loaded TiO2 nanotubes enhanced osteoblast spreading, proliferation, alkaline phosphatase activity and late-stage osteoblast mineralization. This study provides a platform to help enhance osteointegration between the bone and implant surface in clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app