Add like
Add dislike
Add to saved papers

Neural-Network-Based Adaptive Funnel Control for Servo Mechanisms With Unknown Dead-Zone.

This paper proposes an adaptive funnel control (FC) scheme for servo mechanisms with an unknown dead-zone. To improve the transient and steady-state performance, a modified funnel variable, which relaxes the limitation of the original FC (e.g., systems with relative degree 1 or 2), is developed using the tracking error to replace the scaling factor. Then, by applying the error transformation method, the original error is transformed into a new error variable which is used in the controller design. By using an improved funnel function in a dynamic surface control procedure, an adaptive funnel controller is proposed to guarantee that the output error remains within a predefined funnel boundary. A novel command filter technique is introduced by using the Levant differentiator to eliminate the ``explosion of complexity'' problem in the conventional backstepping procedure. Neural networks are used to approximate the unknown dead-zone and unknown nonlinear functions. Comparative experiments on a turntable servo mechanism confirm the effectiveness of the devised control method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app