Add like
Add dislike
Add to saved papers

Global Exponential Stability and Synchronization for Discrete-Time Inertial Neural Networks With Time Delays: A Timescale Approach.

This paper considers generalized discrete-time inertial neural network (GDINN). By timescale theory, the original network is rewritten as a timescale-type inertial NN. Two different scenarios are considered. In a first scenario, several criteria guaranteeing the global exponential stability for the addressed GDINN are obtained based on the generalized matrix measure concept. In this case, Lyapunov function or functional is not necessary. In a second scenario, some inequality analytical and scaling techniques are used to achieve the global exponential stability for the considered GDINN. The obtained criteria are also applied to the global exponential synchronization of drive-response GDINNs. Several illustrative examples, including applications to the pseudorandom number generator and encrypted image transmission, are given to show the effectiveness of the theoretical results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app