Add like
Add dislike
Add to saved papers

Symmetries and Many-Body Excitations with Neural-Network Quantum States.

Physical Review Letters 2018 October 20
Artificial neural networks have been recently introduced as a general ansatz to represent many-body wave functions. In conjunction with variational Monte Carlo calculations, this ansatz has been applied to find Hamiltonian ground states and their energies. Here, we provide extensions of this method to study excited states, a central task in several many-body quantum calculations. First, we give a prescription that allows us to target eigenstates of a (nonlocal) symmetry of the Hamiltonian. Second, we give an algorithm to compute low-lying excited states without symmetries. We demonstrate our approach with both restricted Boltzmann machines and feed-forward neural networks. Results are shown for the one-dimensional spin-1/2 Heisenberg model, and for the one-dimensional Bose-Hubbard model. When comparing to exact results, we obtain good agreement for a large range of excited-states energies. Interestingly, we find that deep networks typically outperform shallow architectures for high-energy states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app