Add like
Add dislike
Add to saved papers

Commissioning of a respiratory gating system involving a pressure sensor in carbon-ion scanning radiotherapy.

This study reports the commissioning methodology and results of a respiratory gating system [AZ - 733 V/733 VI (Anzai Medical Co., Japan)] using a pressure sensor in carbon-ion scanning radiotherapy. Commissioning includes choosing a location and method for pressure sensor installation, delay time measurement of the system, and the final flow test. Additionally, we proposed a methodology for the determination of a threshold level of generating an on/off gate for the beam to the respiratory waveform, which is important for clinical application. Regarding the location and method for installation of the pressure sensor, the actual person's abdomen, back of the body position, and supine/prone positioning were checked. By comparing the motion between the pressure sensor output and the reference LED sensor motion, the chest rear surface was shown to be unsuitable for the sensor installation, due to noise in the signal caused by the cardiac beat. Regarding delay time measurement of the system, measurements were performed for the following four steps: (a). Actual motion to wave signal generation; (b). Wave signal to gate signal generation; (c). Gate signal to beam on/off signal generation; (d). Beam on/off signal to the beam irradiation. The total delay time measured was 46 ms (beam on)/33 ms (beam off); these were within the prescribed tolerance time (<100 ms). Regarding the final flow test, an end-to-end test was performed with a patient verification system using an actual carbon-ion beam; the respiratory gating irradiation was successfully performed, in accordance with the intended timing. Finally, regarding the method for determining the threshold level of the gate generation of the respiration waveform, the target motion obtained from 4D-CT was assumed to be correlated with the waveform obtained from the pressure sensor; it was used to determine the threshold value in amplitude direction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app