Add like
Add dislike
Add to saved papers

Icariin ameliorates angiotensin II-induced cerebrovascular remodeling by inhibiting Nox2-containing NADPH oxidase activation.

Human Cell 2018 November 2
Cerebrovascular smooth muscle cells (SMCs) hyperplasia is an important contributor to cerebrovascular remodeling during hypertension. The aim of present study was to investigate the effects of Icariin on cerebrovascular SMCs proliferation and remodeling and the underlying mechanisms. The results revealed that Icariin administration attenuated the enhanced basilar artery constriction in angiotensin II (AngII)-induced hypertension rat model, as well as the inhibition of basilar artery diameter reduction in response to AngII and phenylephrine. In addition, histological analyses showed that Icariin also significantly ameliorated basilar artery remodeling in AngII hypertensive rats. In human brain vascular SMCs (HBVSMCs), AngII-induced cell proliferation, migration and invasion were markedly inhibited by Icariin treatment. Moreover, Icariin treatment largely limited AngII-induced the increase of reactive oxygen species (ROS) production in HBVSMCs, which was closely associated with cell proliferation. Analysis of the mechanisms showed that Icariin decreased ROS production via inhibiting NADPH oxidase activity but not mitochondria-derived ROS production. Further, Icariin promoted Nox2 degradation and consequently reduced its protein expression. In conclusion, these findings demonstrate that Icariin attenuates cerebrovascular SMCs hyperplasia and subsequent remodeling through inhibiting Nox2-containing NADPH oxidase activation, suggesting Icariin may be a potential therapeutic agent to prevent the onset and progression of stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app