Add like
Add dislike
Add to saved papers

Seasonality at the equator: isotope signatures and hormonal correlates of molt phenology in a non-migratory Amazonian songbird.

Background: Birds, across their annual cycle, progress through sequences of life-history stages such as reproduction and molt. The mechanisms that control annual avian itineraries involve endocrine responses triggered by seasonal environmental factors, including changes in resource availability and/or photoperiod. However, at equatorial latitudes birds are exposed to different degrees of seasonality, and the mechanisms underlying phenology of birds near the equator remain less explored. We studied the silver-beaked tanager, an endemic Amazonian songbird, from an equatorial lowland population. Remarkably, in this species, song behavior has been shown to be seasonally aligned to minimal changes in day length near the equator. Here, we aimed to further explore the phenology of silver-beaked tanagers by assessing shifts of food sources utilization as potential ultimate factors. We measured triple isotopic tracers of carbon (δ13 C), nitrogen (δ15 N) and sulphur (δ34 S) in blood and feathers of birds throughout a whole year. In addition, we assessed the degree of seasonality in the molting activity, in relation to circulating levels of corticosterone, as well as to testosterone as a proxy of the reproductive condition of males.

Results: There was important seasonal variation of δ34 S values in relation to rainfall patterns and changes in estuarine water composition. Despite the seasonal rainfall, we found no substantial variation in the foraging ecology of birds over seasons. This was accompanied by uniform levels of corticosterone throughout the year, probably associated with the absence of drastic seasonal resource shortages. Even so, silver-beaked tanagers showed a marked seasonal molting schedule, which was related to variation in the circulating levels of both corticosterone and testosterone.

Conclusions: These findings suggest that foraging niche is not life history stage-dependent in silver-beaked tanagers, and highlight rainfall as an important environmental cue for bird phenology. Our stable isotope results encourage further studies addressing the influence of estuarine water dynamics on bird timing. In addition, the results suggest a primary role of steroid hormones in regulating seasonal life history stages under the absence of a marked photoperiod. Contrary to what might be expected for a tropical songbird, our physiological data in silver-beaked tanagers do not support reproduction-molt overlapping.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app